-	-				
		GUJARAT TECHNOLOGICAL UNIVERSITY			
		BE - SEMESTER-1/2 EXAMINATION – WINTER 2021			
Subj	ect	Code:3110018 Date:22/03	/2022		
Subject Name: Physics					
Time:10:30 AM TO 01:00 PM Total Marks					
Instru	ictior	15:			
		Attempt all questions.			
		Make suitable assumptions wherever necessary.			
	3. 4.	Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed.			
	ч.	Simple and non-programmable scientific calculators are anowed.	Marks		
01	(a)	Define absorption, spontaneous emission and stimulated emission for	03		
Q.1	(a)	bulk semiconductors.	03		
	(b)		04		
		·			
	(c)	Give assumptions of classical free electron theory and discuss its	07		
		limitations.			
Q.2	(a)	Find the temperature at which there is 1% probability that a state with	03		
Q.2	(a)	energy 2eV is occupied. Given that Fermi energy is 1.5 eV	03		
	(b)		04		
	(c)	1 0	07		
		explains the origin of band gap in solids.			
		OR			
	(c)		07		
		help of energy band diagram.			
Q.3	(a)		03		
		conduction band at room temperature. If the temperature is increased to			
	(b)	330°K, Find the position of Fermi level. Write an expression for Fermi Dirac distribution function $f(E)$. Show	04		
	(0)	that at all temperatures ($T > 0K$) probability of occupancy of Fermi	V-		
		level is 50%.			
	(c)	Discuss the effect of temperature on the Fermi level in extrinsic (N & P	07		
		type) semiconductors.			
		OR			
Q.3	(a)		03		
		conductivity is 0.1 Ω -cm ⁻¹ , mobility of electrons is 1300 cm ² /V-s and			
	(b)	total carrier concentration is 1.5×10^{10} carriers / cm ³ . Establish the relation between Einstein's coefficients.	04		
	(b) (c)	Explain Meissener's effect in detail and show that for superconductor,	04 07		
	(C)	$\chi_m = -1.$	07		
		$\lambda^m = 1$			
Q.4	(a)	Write a short note on effective mass of electron.	03		
-	(b)	What is mass action law?	04		
		Explain Schottky junction.			
	(c)	•	07		
		and magnetoresistance.			
04	(n)	OR What is an exciton?	03		
Q.4	(a)	What is DLTS?	03		
		Define Hall mobility.			
		· · · · · · · · · · · · · · · · · · ·			

1

Download all NOTES and PAPERS at StudentSuvidha.com

	(b)	What is Fermi level and Fermi energy?	04
	(c)	What is Photovoltaic Cell? Explain four point probe method with diagram for the measurement of resistivity of bulk sample.	07
Q.5	(a)	Explain Fermi Golden rule for transition probability.	03
	(b)	What is Josephson junction? Write a short note on SQUID.	04
	(c)	Explain how to measure band gap of the semiconductor using UV-Vis spectroscopy.	07
		OR	
Q.5	(a)	Calculate the critical current for a superconducting wire of lead having a diameter of 1mm at 4.2 K. Critical temperature for lead is 7.18 K and $H_c(0) = 6.5 \times 10^4 \text{ A/m}.$	03
	(b)	Write a short note on Hot-point probe measurement technique.	04
	()		

What is superconductivity? Explain any six properties (c) of 07 superconductor.

www.dentsundha.com